

AQA Computer Science A-Level
4.4.5 A model of computation

Advanced Notes

www.pmt.education

Specification:

4.4.5.1 Turing machine:

Be familiar with the structure and use of Turing machines that perform
simple computations.

Know that a Turing machine can be viewed as a computer with a single
fixed program, expressed using:

● A finite set of states in a state transition diagram
● A finite alphabet of symbols
● An infinite tape with marked-off squares
● A sensing read-write head that can travel along the tape, one

square at a time.
One of the states is called a start state and states that have no outgoing

transitions are called halting states.
Understand the equivalence between a transition function and a state

transition diagram.
Be able to:

● Represent transition rules using a transition function
● Represent transition rules using a state transition diagram
● Hand-trace simple Turing machines

Be able to explain the importance of Turing machines and the Universal
Turing machine to the subject of computation.

www.pmt.education

Turing Machines

A Turing Machine is a ​formal model of computation ​ that
consists of a ​finite state machine ​, a ​read/write head ​and a
tape that is ​infinitely long ​ in one direction.

The tape is divided into ​cells​, each of which can be left ​blank
or contain a ​symbol​. Symbols are written to and removed
from cells on the tape by the Turing machine’s read/write
head. The set of symbols that a Turing machine uses is
called its ​alphabet ​ and must be ​finite​.

A Turing machine can be viewed as a computer which runs a ​single program​, as defined
by a ​finite state machine​. The finite state machine will have a ​start state​ and may have a
number of states from which there are ​no transitions​, referred to as ​halting states​.

Turing machines stop after reaching their halting state. This state can be entered ​at any
point​ in the machine’s execution of its input data and is entered once all of the input data
has been processed.

1 1 □ 0 □ 1 0

A Turing machine can be represented graphically as a series of cells, each containing a
symbol​, and a triangular pointer which represents the position of the machine’s ​read/write
head ​. A □ symbol signifies an ​empty cell​.

As a model of computation, Turing machines are ​more powerful ​than finite state machines.
This is because they can utilise a ​greater range of languages ​than finite state machines
and because their tape is ​infinitely long​ in one direction.

www.pmt.education

Transition Functions

The rules that a Turing machine follows can be laid out using ​transition functions​. These
are written in the form:

δ(current state, read) = (new state, write, move)

where δ is the Greek letter delta. For example:

δ (S​0​, □) = (S​1​, 1, R)

means if the machine is in state S ​0​ and reads an empty cell, the machine should write a ​1​,
move to state S​1​ and move its read/write head to the right.

There is an equivalence between ​transition functions​ and transition rules in a ​state
transition diagram ​.

For example, the transition between state ​S​0​ and state ​S​1​ in the state transition diagram
above could be written as a​ transition function ​like so:

δ (S​0​, 1) = (S​1​, 1, R)

www.pmt.education

Example - Tracing a Turing machine
This example uses a Turing machine following the finite state machine in the state
transition diagram above. Starting in ​S​0​ (the ​start state​) and with the data ​110​ on the tape.

S​0 1 1 0 □ □ □

The Turing machine is in state ​S​0​ and the read/write head reads a ​1​. In accordance with
the state transition diagram, the Turing machine writes a ​1​, changes to state S​1​ and moves
to the right.

S​1 1 1 0 □ □ □

Now in state ​S​1​, the Turing machine reads a ​1.​ As specified by the state transition
diagram, the machine writes a ​1​ to the tape, moves to the right and changes to state ​S​0​.

S​0 1 1 0 □ □ □

The Turing machine is in state ​S​0​ and reads a ​0​, so writes a ​0​, moves to the right and
remains in state ​S​0​.

S​0 1 1 0 □ □ □

Now the Turing machine reads an empty cell and is in state ​S​0​. The machine writes a ​1​,
moves to the right and changes to state ​H​, the ​halting state​.

H 1 1 0 1 □ □

www.pmt.education

Universal Turing Machines

Turing machines are limited to following ​ just one ​finite state
machine, making them ​specific ​to the computational problem
they need to solve.

Universal Turing machines are capable of representing ​any
finite state machine ​. A description of the finite state machine
to be used is read off of ​the same tape​ as the input data and
then used to process the input data as usual.

Universal Turing machines can be said to act as ​interpreters
because of the way they read their instructions​ in sequence​ before​ executing operations
on their input data.

The importance of Turing machines

Turing machines provide a ​formal model of computation ​ and therefore a ​definition of what
is computable ​. The real importance of this to the subject of computation is that Turing
machines can prove that there are problems which​ cannot be solved by computers​.

www.pmt.education

