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Specification: 
 
4.4.5.1 Turing machine: 

Be familiar with the structure and use of Turing machines that perform 
simple computations. 

Know that a Turing machine can be viewed as a computer with a single 
fixed program, expressed using: 

● A finite set of states in a state transition diagram 
● A finite alphabet of symbols 
● An infinite tape with marked-off squares 
● A sensing read-write head that can travel along the tape, one 

square at a time. 
One of the states is called a start state and states that have no outgoing 

transitions are called halting states. 
Understand the equivalence between a transition function and a state 

transition diagram. 
Be able to: 

● Represent transition rules using a transition function 
● Represent transition rules using a state transition diagram 
● Hand-trace simple Turing machines 

Be able to explain the importance of Turing machines and the Universal 
Turing machine to the subject of computation. 
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Turing Machines 
 
A Turing Machine is a ​formal model of computation ​ that 
consists of a ​finite state machine ​, a ​read/write head ​and a 
tape that is ​infinitely long ​ in one direction. 
 
The tape is divided into ​cells​, each of which can be left ​blank 
or contain a ​symbol​. Symbols are written to and removed 
from cells on the tape by the Turing machine’s read/write 
head. The set of symbols that a Turing machine uses is 
called its ​alphabet ​ and must be ​finite​. 
 
A Turing machine can be viewed as a computer which runs a ​single program​, as defined 
by a ​finite state machine​. The finite state machine will have a ​start state​ and may have a 
number of states from which there are ​no transitions​, referred to as ​halting states​. 
 
Turing machines stop after reaching their halting state. This state can be entered ​at any 
point​ in the machine’s execution of its input data and is entered once all of the input data 
has been processed. 
 

1  1  □  0  □  1  0 

 
      

 
A Turing machine can be represented graphically as a series of cells, each containing a 
symbol​, and a triangular pointer which represents the position of the machine’s ​read/write 
head ​. A □ symbol signifies an ​empty cell​.  
 
As a model of computation, Turing machines are ​more powerful ​than finite state machines. 
This is because they can utilise a ​greater range of languages ​than finite state machines 
and because their tape is ​infinitely long​ in one direction. 
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Transition Functions 
 
The rules that a Turing machine follows can be laid out using ​transition functions​. These 
are written in the form: 
 

δ(current state, read) = (new state, write, move) 
 
where δ is the Greek letter delta. For example: 
 

δ (S​0​, □) = (S​1​, 1, R) 
 

means if the machine is in state S ​0​ and reads an empty cell, the machine should write a ​1​, 
move to state S​1​ and move its read/write head to the right. 
 
There is an equivalence between ​transition functions​ and transition rules in a ​state 
transition diagram ​. 

 
For example, the transition between state ​S​0​ and state ​S​1​ in the state transition diagram 
above could be written as a​ transition function ​like so: 
 
 

δ (S​0​, 1) = (S​1​, 1, R) 
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Example - Tracing a Turing machine 
This example uses a Turing machine following the finite state machine in the state 
transition diagram above. Starting in ​S​0​ (the ​start state​) and with the data ​110​ on the tape. 
 

S​0  1  1  0  □  □  □ 

             

 
The Turing machine is in state ​S​0​ and the read/write head reads a ​1​. In accordance with 
the state transition diagram, the Turing machine writes a ​1​, changes to state S​1​ and moves 
to the right. 
 

S​1  1  1  0  □  □  □ 

             

 
Now in state ​S​1​, the Turing machine reads a ​1.​ As specified by the state transition 
diagram, the machine writes a ​1​ to the tape, moves to the right and changes to state ​S​0​. 
 

S​0  1  1  0  □  □  □ 

             

 
The Turing machine is in state ​S​0​ and reads a ​0​, so writes a ​0​, moves to the right and 
remains in state ​S​0​. 

S​0  1  1  0  □  □  □ 

             

 
Now the Turing machine reads an empty cell and is in state ​S​0​. The machine writes a ​1​, 
moves to the right and changes to state ​H​, the ​halting state​. 
 

H  1  1  0  1  □  □ 
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Universal Turing Machines 
 
Turing machines are limited to following ​ just one ​finite state 
machine, making them ​specific ​to the computational problem 
they need to solve. 
 
Universal Turing machines are capable of representing ​any 
finite state machine ​. A description of the finite state machine 
to be used is read off of ​the same tape​ as the input data and 
then used to process the input data as usual. 
 
Universal Turing machines can be said to act as ​interpreters 
because of the way they read their instructions​ in sequence​ before​ executing operations 
on their input data. 
 

The importance of Turing machines 
 
Turing machines provide a ​formal model of computation ​ and therefore a ​definition of what 
is computable ​. The real importance of this to the subject of computation is that Turing 
machines can prove that there are problems which​ cannot be solved by computers​. 
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